Текст не мой, из телеграм канала Spydell_finance в несколько сокращённом виде для удобства чтения.
• Впервые формализация концепции ИИ была еще в середине 20 века, а более осмысленные и работоспособные модели ИИ существует уже более 30 лет (на уровне расширенных скриптов и экспертных систем, где пионером были компьютерные игры).
• В 2000х годах распознавание текста и позже изображений, переводчики, голосовые ассистенты, торговые алгоритмы.
• В 2010х годах – глубокое обучение и нейронные сети, Big data, распознавание видео, самоуправляемый транспорт.
• Высокоразвитые модели ИИ начали появляться в 2017-2018, бурная экспансия началась с 2019-2020 (бум улучшайзеров для фото, рекомендации музыки, анализ новостного контента, дипфейки), а с 2021 по экспоненте пошли генеративные модели ИИ.
Именно генеративные ИИ способны произвести революционные трансформации в экономике, обществе и на рынке труда.
Генеративные модели ИИ - тип алгоритмов машинного обучения, предназначенных для создания (генерации) новых данных, которые похожи на обучающие данные. Эти модели могут создавать тексты, изображения, звуки или другие типы данных, которые воспроизводят стили, паттерны и характеристики исходного набора данных.
В чем революция? Изначально предполагалось, что ИИ заменит монотонный/повторяющиеся, а значит формализируемый вид труда и низко-квалифицированную рабочую силу и лишь в самом конце, на вершине своей эволюции ударит по творческим профессиям, но оказалось все иначе.
Генеративный ИИ сносит именно творческий сегмент профессий:
▪️Создание текста – осмысленные тексты, практически не отличимые от человеческого стиля письма, с возможностью создавать анекдоты, стихи, сценарии для фильмов, истории, новостные статьи.
▪️Создание программного кода, что позволит в десятки раз ускорить поиск решений и создание кода для профессиональных программистов, заменяя низко и средне квалифицированных программистов.
▪️Создание музыки. Генерация музыкальных композиций, имитирующих определенные стили, на основе анализа десятков тысяч произведений или создание совершенно новых музыкальных произведений (экспериментальная нейро-музыка).
▪️Создание реалистичных изображений. Опять же, на основе анализа паттернов сверх большого массива реальных фотографий упорядочиваются характеристики, структура и особенности объектов и далее через алгоритмы GAN генерируются синтетические изображения.
▪️Создание видео. Те самые дипфейки. ИИ анализирует видео, изучая характеристики движения, переходы между кадрами, визуальные и аудио паттерны и далее по аналогичному методу, как и с изображениями – генерируется ИИ видео. Может применяться для анимации, создания спецэффектов.
▪️Генерация речи, сохраняя тембр, интонации, ритм человеческой речи. Может применяться в ИИ-консультантах, синхронных переводчиках, навигационных системах, голосовых помощниках, в озвучивании книг, онлайн видео и фильмов.
▪️Симулирование и моделирование сложных систем. Все, что можно формализовать – идеальная среда для ИИ. Научные вычисления входят в этот сегмент. Может применяться в расширении предиктивных/предсказательных моделей в финансах, экономике и бизнесе, в виртуальном прототипировании (для инженеров, архитекторов, конструкторов).
Ещё с 2005-2007 начался бум алгоритмических систем на основе предиктивного анализа в торговых роботах на бирже.
Улучшение аппаратного обеспечение открыло новые возможности для прогнозирования погоды на основе ИИ и в робототехнике.
До 2010 развивался, по сути, лишь один из восьми базовых признаков ИИ (https://t.me/spydell_finance/4701) – это предиктивный анализ, что активно использовался в торговых алгоритмах на бирже (анализ паттернов), в научных и экономических исследованиях, в прогнозировании погоды, в оценке страховых и финансовых рисков и так далее.
Все остальные семь признаков ИИ находили теоретическое обоснование и прототипирование с 1950 по 2010 с разной интенсивностью и с разной успешностью. Причем, концепты были во всех измерениях, даже в когнитивных функциях, где в 90-х и начале нулевых лучшие решения были от IBM.
То, что есть сейчас – не новинка, но препятствием к развитию были вычислительные мощности и отсутствие данных. Big data зародился в середине 2000-2010, а в лучшую форму вышел в 2010-2020, плюс к этому вычислительные мощности серверов выросли на порядок.
Началась бурная экспансия ИИ во все отрасли экономики и сферы жизни. Практически не было не затронутых ключевых отраслей: здравоохранение, образование, транспорт, розничная и оптовая торговля, логистика и склад, консалтинг, финансы и страхование, промышленность и сельское хозяйство, умная система управление городом, распознавание лиц, кибербезопасность и так далее.
Важнейшим этапом стал выдающиеся прогресс в Natural Language Processing (NLP) и понимании семантики и конструкции языка, позволяя выстраивать адекватные смысловые структуры.
Семантика языка играет критическую роль в понимании и интерпретации человеческого языка. Алгоритмы и модели стремятся понять не только буквальные значения слов, но и их семантический контекст и намерения, говорящего или пишущего.
Мера развития ИИ напрямую связана с пониманием контекста и смысла «между строк». На данный момент – это слабое место ChatGPT, но, с другой стороны, невероятный прогресс за последние годы.
Сложно сказать, куда все это приведет, но прогресс впечатляющий, мягко говоря…
Что позволило ИИ стать настолько эффективным? Любая технология имеет определённый порог зрелости, внедрение которой ограничено наличием смежных технологий.
Например, появление микропроцессора невозможно было без изобретения транзистора в 1947, интегральных схем в 1950-х, определенной степени зрелости химической промышленности, что позволило развить фотолитографию и кремниевые технологии, наличия электронной промышленности или научных открытий в бинарной логике и так далее.
ИИ - результат синергии множества технологических, научных и промышленных достижений последних 100 лет.
Можно выделить множество факторов, повлиявших на экспансию ИИ, но ключевых несколько – вычислительные мощности, big data (в том числе алгоритмы их анализа) и инновационные алгоритмы машинного обучения, особенно методов нейронных сетей.
Одним из существенных драйверов развития ИИ в 90-х были компьютерные игры (ИИ для игровых ботов), которые в свою очередь предопределили развитие индустрии, как на аппаратном уровне, так и на программном.
В одном из интервью CEO OpenAI Сэм Альтман сказал, что одним из главных драйверов быстрого развития ИИ стали геймеры, которые двигали прогресс видеокарт, что позволило экспоненциально нарастить вычислительные мощности, которые потом стали использоваться для ИИ проектов, а сейчас прогресс видеокарт двигают уже ИИ.
В каких существующих секторах/отраслях экономики возможен рывок?
▪️ Медицина
Персонализированная медицина. Генеративный ИИ может использоваться для разработки новых методов диагностики, которые могут быть более точными и эффективными, чем существующие методы, используя накопленные базы данных по болезням и лекарствам, объединяя, интегрируя и анализируя лучшие врачебные методики и практики кратно быстрее, чем коллектив самых опытных врачей.
Разработка новых методов профилактики заболеваний. ИИ может анализировать медицинские данные, включая историю болезни, генетические данные и образ жизни, чтобы оценить риск развития определенных заболеваний, предсказывая риски различных заболеваний, учитывая состояние здоровья, генетические отклонения, патологии, условия жизни, питание и т.д.
Разработка новых лекарств и методов лечения, которые могут быть более эффективными и безопасными, чем существующие методы. Например, ИИ может использоваться для разработки персонализированных лекарств, которые могут быть адаптированы к индивидуальным характеристикам каждого пациента, снижая риски побочных эффектов. ИИ может ускорить процесс открытия и разработки новых лекарств, используя свои алгоритмы для моделирования и прогнозирования взаимодействия молекул.
Предсказание эпидемий. Используя данные о текущих инфекциях, миграционных потоках и климатических изменениях, ИИ может прогнозировать распространение инфекционных заболеваний.
Медицинская визуализация и диагностика: Генеративные ИИ модели способны улучшить качество медицинских изображений и обеспечить более точную интерпретацию данных. Такие системы могут автоматически обнаруживать патологии на рентгеновских снимках, МРТ или КТ, что повышает точность диагностики.
▪️Образование
Персонализация обучения. Генеративный ИИ может использоваться для создания индивидуальных учебных планов для каждого ученика, в том числе языковое обучение, основанных на индивидуальных умственных, физических способностях, интересах и предрасположенностях. Это позволит раскрывать потенциал каждого человека наиболее эффективно – музыкант будет музыкантом, а физик – будет физиком.
Интеграция интерактивных учебных материалов на основе анализа и структуризации сверх большого массива актуальной информации, используя лучшие мировые достижения в сфере науки и образования. ИИ может в режиме реального времени генерировать разнообразный контент, повышая вовлеченность учеников в учебных процесс, повышая их внимание, заинтересованность, усиливая конверсию от учебы.
Интерактивная учеба будет в непрерывном игровом процессе, позволяя детям концентрироваться на материале. Учеба, как захватывающая игра по лююой специальности– что может быть лучше для детей? Это революция в сфере образования.
Виртуальные помощники – теперь больше не будет привязки к низкой квалификации учителей. На любой, даже самый неудобный вопрос можно получить исчерпывающий ответ 24 на 7 в любом формате, начиная от неформального/игрового, заканчивая строгим академическим стилем.
Беспристрастный и непредвзятый механизм оценки учащихся на основе реальной чистой эффективности каждого ученика, что позволит оперативно подстраивать учебный процесс под лидеров и аутсайдеров.
Развитие навыков критического мышления и решения проблем: ИИ может предложить сложные и реалистичные сценарии, требующие от учащихся анализа, критического мышления и решения проблем.
Про дистанционное и гибридное обучение – тут понятно.
▪️Финансы и страхование
Прогнозирование и управление рисками. Риск менеджмент в своей основе наиболее формализованный сегмент финансовой индустрии, который в наилучшей степени поддается «запиранию» в рамки ИИ, который способен прогнозировать риски, связанные с кредитованием, инвестициями и страхованием, забирая на себя функции риск-менеджеров.
Расширенный анализ данных. Финансы, как и экономика – это непрерывный поток данных, которые поддаются упорядочиванию через идентификаторы, веса и «маяки». ИИ способен анализировать огромные объемы финансовых данных в режиме реального времени, включая транзакции, экономические и рыночные тенденции, также потребительское и корпоративное поведение.
Прогнозирование тенденций. Значительная часть данных и процессов в фининдустрии регулярно повторяется через различные комбинации, а следовательно, возможен анализ паттернов, где ИИ очень силен (статистика и вероятности), что позволяет быстрее, точнее и эффективнее предсказывать наиболее вероятные тенденции.
Автоматизирование инвестирование. Данный подход применяется уже более 20 лет в рамках алгоритмических систем и торговых роботов, но теперь может выйти на совершенно иной уровень за счет комбинации инструментов, где одновременно объединяется анализ вероятностей и паттернов, риск менеджмент и прогнозирование.
Автоматизация задач. Свыше 80% бизнес операций в финансах и страховании – в чистом виде рутина по протоколам действий. Если есть протоколы – значит есть пространство для ИИ, который может автоматизировать многие рутинные и трудоемкие процессы, такие как обработка заявок на кредиты, управление клиентскими аккаунтами и анализ страховых претензий, что повышает эффективность и сокращает затраты.
Финансовый консультант на базе ИИ может обеспечивать высококачественное обслуживание клиентов, предоставляя быстрые и точные ответы на их вопросы, а также помогая в выполнении финансовых операций – намного быстрее и эффективнее человека, за исключением сложных вопросов.
Автоматические написание инвестиционных и рыночных обзоров/новостей. Обучение ИИ на базе миллионов инвестиционных обзоров за последние 50-60 лет позволит создать высокоразвитого инвестаналитика на базе ИИ, который будет быстро, релевантно и качественно писать обзоры.
Обнаружение и предотвращение мошенничества. Анализ транзакционных данных для выявления подозрительных или необычных паттернов (мошенники в 97% случаях действуют по похожим схемам), что помогает в борьбе с финансовым и страховым мошенничеством.
Автоматический контроль за налоговыми требованиями и регуляторными нормами, что позволит избежать штрафов и преследования со стороны государства.
▪️Юриспруденция, бухгалтерия и документооборот
Анализ юридических документов. Анализ больших объемов правовых документов ( судебные решения, законы, акты и коммерческие и госконтракты). Это может помочь юристам быстрее находить необходимую информацию и выявлять закономерности, которые могут быть использованы для принятия более обоснованных решений.
Автоматизация документооборота. Автоматизация процесса создания и обработки юридических документов, таких как контракты, иски, заявления, протоколы и цифровые подписи. ИИ может генерировать эти документы, основываясь на заданных параметрах и стандартах, что сокращает время и уменьшает вероятность человеческой ошибки.
Повышение качества документов в соответствии с актуальным национальным и международным законодательством. ИИ может в режиме реального времени отслеживать все новации в праве, вовремя адаптируя документацию под законодательство.
Предсказание юридических рисков. Прогнозирование потенциальных юридических рисков для компаний и частных лиц, анализируя законодательные изменения, решения судов и другие юридические тренды.
Персонализация юридических услуг и виртуальный помощник. ИИ может выполнять функцию высокопрофессионального юриста совершенно бесплатно, быстро и безошибочно. ИИ помочь в создании персонализированных юридических рекомендаций и консультаций, учитывая специфические обстоятельства и потребности клиента.
▪️Промышленность (добыча + обработка + электроэнергетика и коммунальные услуги)
Глубокая автоматизация производственных процессов с динамическим контролем эффективности. ИИ может способствовать разработке и внедрению более высокоуровневых автоматизированных и роботизированных систем, чем в текущих АСУ.
Управление рисками и безопасностью, в том числе предиктивное обслуживание. Анализ данных о производственной безопасности и рисках, помогая идентифицировать потенциальные опасности и предлагать меры для уменьшения рисков, в том числе применяя превентивные меры по устранению внештатных ситуаций и замене и/или обслуживания оборудования.
Оптимизация производственных процессов, ресурсов в том числе цепочек поставок и логистики. Анализ данных производственных процессов для оптимизации эффективности и сокращения затрат. Это включает в себя управление запасами, планирование производства, обслуживание оборудования и энергопотребление. ИИ может оптимизировать логистику и управление цепочками поставок, анализируя данные о спросе, запасах и транспортных потоках, что повышает эффективность и снижает затраты.
Качество продукции и контроль процессов. ИИ может анализировать данные с производственных линий для контроля качества продукции, определяя дефекты и несоответствия, что способствует повышению общего качества продукции.
Энергетическое управление и оптимизация. Более эффективное распределение энергетические ресурсов, снижая потери и избыточную или недостаточную выработку, динамически подстраиваясь под спрос.
▪️Сельское хозяйство
Большая часть из сказанного выше про промышленность, плюс к этому:
Автоматизация сельскохозяйственных работ. ИИ-системы могут управлять автономными тракторами, дронами и другими сельскохозяйственными машинами для выполнения таких задач, как посев, удобрение, сбор урожая и обработка почвы.
Мониторинг здоровья растений и животных. ИИ может использоваться для мониторинга здоровья и благополучия растений и животных, обнаруживая болезни и вредителей на ранних стадиях и помогая определять оптимальные условия для их роста и развития.
Прогнозирование и автоматизация планирования посева и животноводства. ИИ может использоваться для автоматизации задач, таких как планирование посевов, мониторинг посевов и управление поливом. Это может повысить урожайность и снизить затраты на производство. Это же справедливо и для животноводства.
ИИ может анализировать данные о погодных условиях, почве и растениях для прогнозирования урожайности и помощи в принятии решений о посадке, удобрении и поливе, что повышает общую продуктивность и уменьшает потери урожая.
▪️Оптовая и розничная торговля, в том числе логистика и складская деятельность, маркетинг и реклама
Прогнозирование спроса, анализ паттернов поведения. ИИ может анализировать рыночные данные для выявления текущих и будущих трендов, помогая ритейлерам и оптовым продавцам адаптироваться к изменяющимся потребностям рынка, анализируя покупательские предпочтения и поведение, как на макро уровне, так и на индивидуальном уровне, предлагая товар только тот, который здесь и сейчас нужен потребителю.
Оптимизация запасов и логистики. Наилучшая оптимизация маршрутов доставки и распределение товаров, сокращая время доставки и затраты. ИИ может прогнозировать спрос и автоматизировать процесс пополнения запасов, минимизируя издержки и сокращая риски, связанные с избыточными или недостаточными запасами, тщательно отслеживания актуальный и будущий спрос, тенденции и сезонность.
Оптимизация ценообразования. ИИ может помогать в динамическом ценообразовании, анализируя факторы спроса/предложения, макроэкономические, финансовые и поведенческие тенденции, определения оптимальных ценовых стратегий, эффективно балансируя запасами, максимизируя маржу торговли.
Автоматическое обслуживания клиентов и анализ отзывов, что позволит в режиме реального времени адаптироваться под предпочтения клиентов, оперативно выявлять ошибки и подстраиваться под потребности рынка, одновременно через чат боты оказывая высококачественную и быструю поддержку клиентов.
▪️Наука и технологии
Систематизация и структуризация сверхбольших массивов информации. Как ученому найти похожие научно-исследовательские материалы? Через поиск, но данные могут нерелевантными или устаревшими. Необходима индексация и анализ тысяч научных статей, чтобы комбинировать и интегрировать в целостную картину схожие исследований.
Генерация гипотез. ИИ может использоваться для генерации гипотез, которые могут быть использованы для проведения научных исследований. Это может помочь ученым ускорить процесс открытия новых знаний.
Сверхбыстрый поиск и обработка комбинаций решений для поиска оптимального пути исследования. ИИ может помочь ученым в проектировании и оптимизации экспериментов, предсказывая наиболее перспективные направления исследований, что снижает затраты и повышает шансы на успех.
Моделирование и симуляция. ИИ способен создавать сложные модели и симуляции, которые могут предсказывать результаты экспериментов и исследований, а также помогать в понимании сложных систем и процессов.
Быстрый поиск и коррекция ошибок в математических, физических моделях или программном коде позволит упростить и ускорить процесс расчетов.
Анализ и интерпретация сложных данных в моделировании сложных систем, создавая более понятную и читаемую структуру данных.
ИИ уже применяется и существенно расширит применение в архитектуре и градостроительстве, материаловедении, в разработке дизайна продукции широкого профиля, в исследованиях и разработке промышленной продукции.
Но что на счет создателей контента?
▪️Медиа индустрия – ньюсмейкеры, журналисты, музыка, фото и видео обработка, создание компьютерной графики и спецэффектов.
Деятельность, связанная с генерацией текстового, звукового или видео контента в различном формате. Из всех отраслей экономики удар точно в цель именно по этому сегменту со стороны генеративного ИИ. С текстом все понятно, слишком много было про него сказано.
Фото. Самый мощный прогресс генеративного ИИ концентрируется в фото, где возможна не только глубокая модернизация существующего фото контента в любом измерении, но и синтез абсолютного нового фото контента по сценарному запросу пользователей.
Видео. ИИ-алгоритмы могут автоматизировать редактирование видео, создавать реалистичные визуальные спецэффекты и даже генерировать новый видеоконтент, в том числе глубокую модификацию на основе дипфейков.
Музыка и аудио. Генеративный ИИ может создавать новые музыкальные композиции, имитируя различные стили и жанры на основе анализа аудио паттернов и истории предпочтений общества. Возможен высокоуровневый синтез человеческой речи и голоса, практически не отличимый от реального.
Шоковая оптимизация и реструктуризация на первом этапе ожидает как раз создателей медиа контента. Вектор понятен, но масштаб и глубина деформации – не могут быть определенными.
Предстоит много времени и множественный анализ, чтобы понять, куда все движется?
Не было затронуто влияние ИИ на транспорт и госуправление.
Что касается транспорта, здесь присутствует три базового направления:
• Автопилоты;
• Динамическое высокоуровневое управление трафиком и дорожным движением;
• Планирование транспортных сетей, что позволит повысить пропускную способность, снизив расходов.
Анализ влияния ИИ на госуправление – отдельная тема.
Так какое результирующее воздействие на экономику, какие риски?
Первое масштабное внедрение ИИ технологий началось в начале 21 века, с 2010-2020 бум интеграций по всем секторам экономики, а с 2023 начался новый этап – экспансия генеративного ИИ.
Под угрозой находятся:
- водители транспорта (по мере внедрение автопилотов),
- почти поголовно операторы Call-центров и службы поддержки пользователей из-за высокоразвитых виртуальных консультантов и помощников,
- офисные клерки из-за оптимизации и автоматизации значительного количества бизнес процедур,
- бухгалтеры,
- финансовые и юридические консультанты,
- риск менеджеры, трейдеры и инвестиционные консультанты,
- финансовые и страховые аналитики начального и среднего уровня,
- копирайтеры, рекламные менеджеры,
- ньюсмейкеры,
- дизайнеры, фото и видео редакторы начального и среднего уровня,
- программисты начального и среднего уровня,
- работники склада и доставки по мере интеграции роботизированных систем и курьеров-беспилотников,
- низко и среднеквалифицированные работники медицины и образования консультационного сегмента,
- работники торговли, сельского хозяйства и промышленности по мере автоматизации процессов.
Список профессий огромный, но ведь как-то раньше переваривали технологический прогресс?
Теоретически, внедрение генеративного ИИ позволит:
- Существенно ускорить технологический прогресс, более быстро внедряя инновационные разработки и продукты.
- Создать новые рынки и новые отрасли, прямо или косвенно связанные с обслуживание ИИ индустрии.
- Автоматизировать многие процессы, повысить производительность труда, высвобождая рабочую силу.
- Оптимизировать бизнес процессы, повысить скорость и качество принятия решений, минимизируя ошибки.
- Оптимизировать цепочки поставок, склад и логистику, что снизит простои, избыток или дефицит, повышая общую эффективность.
- Снизить риски бизнеса в финансах, страховании и в юридических аспектах.
- Улучшить качество продукции и услуг.
Все это должно существенно повысить рост ВВП, снизить инфляцию, увеличить маржинальность и эффективность бизнеса, делая людей счастливыми. Так что здесь не так?
На самом деле хорошая иллюстрация – это внедрение автоматизации в промышленности в начале 20 века, где расширение применение конвейеров шло с 1915 по 1980, а с 1980-х началось применение АСУ, САПР и высокоинтегрированных промышленных комплексов, пик которых пришелся на 2004-2007 (за последние 15-20 лет практически нет существенных инноваций в автоматизации промышленности на уровне конвейеров).
С другой стороны, пошла новая волна использования роботов, началась интеграция ИИ и использование принципиально новой технологии 3D печати.
За последние 50 лет промышленность в США выросла в 2.3 раза, а количество занятых сократилось почти на треть. Внедрение инноваций в промышленность за последние 15 лет не оказало влияния ни на уровень маржинальности промышленности, ни на объем выпуска продукций (интегрально по всей промышленности).
Учитывая, что период глубокой автоматизации промышленности длился как раз 50 лет, рост в 2.3 раза не выглядит существенным, не так ли?
Внедрение ИИ по всей экономике активно идет последние 15 лет, но именно с 2009 консенсус мнение многих академических умов заключается в том, что рост сломался, а общая эффективность падает в сравнении с периодом 1992-2007.
При этом высокоинтенсивное внедрение инноваций за последние 30 лет (компьютеры, интернет, мобильные телефоны, беспроводная связь, биотехнологии, нанотехнологии, 3d печать, облачные технологии, ИИ) не привело к всеобъемлющему росту безработицы (наоборот, дефицит кадров!).
Эти небольшие зарисовки показывают, что не все так очевидно…
Человек против ИИ – какая предельная глубина интеграции и какая способность замещения человека ИИ?
Вопрос крайне важный, т.к. от этого зависит способность ИИ интегрироваться в человеческие сферы деятельности, а следовательно, фундаментально влиять на структуру рынка труда со всеми вытекающими последствиями.
Какие фундаментальные преимущества ИИ над человеком?
▪️Неограниченный объем памяти и скорость накопления информации. Скорость обучения человека крайне низка, но даже обучившись, человек ежедневно теряет навыки и информацию, т.е. требуется постоянное концентрация на информационной единице (объекте исследований) и поддержка навыков. ИИ достаточно обучиться один раз, чтобы держать информацию в прямом доступе.
▪️Скорость обработки информации. Параллельная обработка неограниченных массивов информации позволяет практически неограниченно масштабировать вычислительные мощности, где математические задачи могут решаться в миллиарды раз быстрее, чем средний человек. Для чтения и осмысления 5 млн знаков у среднего человека потребуется около 3500 минут, тогда как ИИ может в пределах доли секунды управиться.
Если у человека не хватит жизни, чтобы познакомиться со всеми произведениями мировой литературы (даже основными), а для ИИ это мгновения. Даже прочитав литературу, человек уже забудет, что было в предыдущей книге (по крайней мере, основные детали), тогда как ИИ помнит все. За пренебрежительно малый временной интервал, ИИ может изучить всю научную литературу по физике, химии, астрономии, биологии, истории и т.д. Не просто изучить, но и в первичном виде помнить до мельчайших деталей.
▪️Точность и объективность. ИИ не ошибается, по крайней мере, если не ошибается вшитый алгоритм функционирования. Человек ошибается постоянно из-за ограниченных способностей удержания, обработки и интерпретации информации. Человек склонен к предубеждениям, ИИ воспроизводит информации по принципу «как есть».
▪️Информационная трансмиссия. Выход на правильный вектор исследования одним из сегментов ИИ моментально транслируется на всю подсеть ИИ, что расширяет знания одного сегмента на всю подсеть сразу. Открытие одного человека или группы ученых невозможно моментально расширить на заинтересованный круг лиц. ИИ можно масштабировать, копировать и клонировать, но нельзя пересадить знания одного человека в другого.
▪️Отсутствие усталости. Производительность и эффективность человека падает по мере выработки ресурса, как в пределах дня, так и возрастом. ИИ может работать 24 на 7 с паритетной эффективностью стабильно и без провалов (до тех пор, пока работают сервера). Человек стареет, становится хуже, когнитивные функции ослабевают, тогда как у ИИ только увеличиваются.
▪️Непрерывное обучение. Человеку необходимо менять род деятельности, чтобы поддерживать необходимый эмоциональный баланс, тогда как ИИ непрерывно расширяет свое могущество.
▪️Отсутствие эмоциональности. ИИ не подвержен перепадам настроения, ИИ не требует повышения зарплаты, уважения, не требует справедливости и не рефлексирует об уровне свободы, ИИ не чувствует ни жалости, ни боли, ни усталости, не плетет интриг, заговоров и не пытается соскочить с рабочего процесса, т.к. «внезапно появились неотложные дела».
Минусов немного, но они есть:
• Сложность в понимании контекста информации (исправимо со временем);
• Отсутствие эмпатии, что формирует этические проблемы, если в пользу ИИ дать слишком много прав;
• Ограниченное пространство для творчества и инноваций из-за фундаментальных встроенных ограничений на понимание того «что такое хорошо, а что такое плохо».
ИИ способен реплицировать успешные творческие опыты на основе анализа паттернов и предпочтений, но способен ли ИИ создавать принципиально новые продукты? Пока сомневаюсь.
Способен ли ИИ к неупорядоченной интеграции и принятию решений, где важным элементом может быть интуиция? Сейчас нет.
Ограничений много, но пока баланс сильно в пользу ИИ. Посмотрим, что получится…
Любая прорывная технология создает риски в условиях быстрой интеграции.
Если руководствоваться потенциалом расширения присутствия во многих отраслях экономики, может сложиться впечатление перехода в иное измерение. Однако, примерно схожие ожидания были и от компьютеров, интернета, мобильной связи и так далее.
При этом технологическая эволюция за последние 30 лет не создала ни безработных, ни каких то драматических структурных трансформаций. В целом, все шло ровно, последовательно, достаточно предсказуемо с положительным эффектом.
Может ли ИИ привести к кризису? Не создать возможности, а наоборот обострить структурные трансформации? Да, вполне и сейчас опишу логику.
▪️Если возможности ИИ будут сопоставимы с декларируемыми, а темпы интеграции высоки – это приведет к демпингу зарплат и высвобождению значительного количество рабочей силы.
Падение доходов неизбежно приведет к падению спроса на макроэкономическом уровне, т.к. количество высвобождающейся рабочей силы будет несоизмеримо больше в сравнении с главными бенефициарами ИИ экспансии.
Прямые бенефициары ИИ – около 5% (провайдеры ИИ, разработчики ИИ, производители аппаратной части для ИИ, топ менеджеры бизнеса, участвующего в ИИ интеграции и собственники этих компаний).
Вопрос, а что делать с остальными 95% экономики?
ИИ автоматизирует многие процессы, повышает качество, точность и скорость принятия решений, ускоряет технологический прогресс, способствует снижению финансового и юридического риска в бизнесе и улучшает качество товаров и услуг.
Одновременно с этим напрямую покушается на рабочие места значительного количество людей по причине сверхпревосходства во многих ранее описанных аспектах (https://t.me/spydell_finance/4713).
Для бизнеса держать капризных и низкоэффективных работников невыгодно и очевидно, что скорость внедрения ИИ будет повышаться. Но кому продавать все эти товары и услуги, кто будет обеспечивать платёжеспособный спрос?
Следует понимать, что в отличие от компьютеров и интернета, ИИ не прибавочная технология, а во многом – замещающая технология.
Компьютеры и интернет создали ИТ индустрию, где заняты десятки миллионов человек, совершенно новый сектор экономики. ИИ не создает новых секторов экономики, он эксплуатирует существующие сектора.
▪️Неизбежно будет рост неравенства в доходах. Вне всяких сомнений провайдеры ИИ получат невероятный памп финансовых показателей по экспоненте, но значительная часть оффлайн экономики скорее будет в минусе, чем в плюсе.
Низко и среднеквалифицированная рутинная работа занимает свыше 70% в структуре рабочей силы. Очевидно, что лишь малая часть идет на потенциальную замену, но это неизбежный рост социальной напряженности и усиление структурных дисбалансов.
Чем быстрее ИИ будет внедряться, тем больше негативного эффекте по интегральной оценке, т.к. скорость внедрения и быстрый результирующий эффект будут несопоставимы с предельной способностью по экономической трансформации.
Разница между ИИ и всеми предыдущими эпизодами технологической революции заключается в скорости интеграции. Раньше это занимало десятилетия, сейчас – годы или даже месяца.
Поэтому ожидаю существенный рост неравенства, обострение структурных дисбалансов и скорее актуализацию кризисных процессов в экономике, а не новый рывок в стратосферу.
Феноменальные возможности ИИ предоставляет тем, кто эти возможности использует напрямую, но это ограниченное число людей.
Нашли опечатку? Выделите фрагмент текста с опечаткой и нажмите Ctrl + Enter. Хотите поделиться тем, что произошло в Витебске? Напишите в наш телеграм-бот. Это анонимно и быстро.
Как-то очень много и очень сложно... Пожалуй, процитирую одного постоянного посетителя витбиза «не дочитал... »
Тата, хехе. Такая же фигня) Верю, что пост интересный, но я на третьем абзаце такая:
крови там не было, потому что вашей нейронке запрещено показывать и визуализировать сцены насилия. Законы роботехники в действии. Никто не даст бесплатной нейронке и дорогущему ИИ в обозримом будущем возможность пусть даже виртуально причинять вред живому. Это же очевидно.
Суть Алисы и подобных тоже в другом. Она не создана вас развлекать. На данном этапе она проходит обучение в поле.
А ещё лучше можете в свободное время почитать пользовательское соглашение с вашей нейронкой. И вот, как пример, что вы там увидите:
starpony, в вдогонку
Так же как и обрабатывает запросы, напрямую связанные с насилием
Kandinsky
Можете сами попробовать
Интересно сравнить
если переписать запрос и сделать его более точным и детальным, то и результат будет лучше. Очевидно ж)
Про руки - это не баг. На данный момент - это фича и маркер для кожаных мешков)
Вот пример. Все что нестандартное- не выполняет
Господин, "один глаз голубой, второй глаз зеленый")) вот что выдало
ИИ на данный момент - искусственный идиот. Необучаемый, непроходимый дебил. Цена железа + лицензии на ИИ к нему всегда много, неизмеримо больше цены труда живого человека.
ИИ - игрушка. И ещё лет 50 таковой будет, пока кубит не вытеснит бит. А это в обозримой перспективе даже и не пахнет
где публицистическое? где постановка вопросов для самостоятельного рассуждения?
даже после обработки напильником этот материал не заслуживает ничего иного, как быть выброшенным. это не для простых людей, это невозможно осилить за один раз, а неподготовленный человек вообще в тему не въедет
эй, выпускающий редактор, ты зачем это пропустил?
macArdRi, алло, гараж, меня не слышно? Мессидж не дошел? 90% чейтателей не дошли даже до середины и закрыли материал! Скучно, нудно, на лекции заснули!
Писать надо с огоньком, чтобы у людей было время подумать после каждого абзаца. А вы сложили кучу энциклопедического формата статей и ждёте, что простолюдины будут в восторге???
Aleksei81, народ о чем рассуждает? Не вижу дискуссии о статье, вижу дискуссию на тему статьи. С таким же успехом можно было напечатать: 'ии это круто. Имхо' (есличто, имею мнение, хрен оспоришь). И трэд скатился бы в то же можно, что мы и имеем
Как можно обсуждать статью, пытающуюся объять необъятное? Даже стенограммы съездов КПСС резали на куски, чтобы народ обсуждал один вопрос за раз
А тут ещё и аффтар не выражает своей личной позиции. По сути, кроме одного раза.
Это журналистика? Ну, значит я устарел. Тащите меня на костер, старую рухлядь, на дрова. Буду на разогреве у аффтара
Да ваш сайт Витебск Биз )
Так что там, видели свидетельство или строку в реестре СМИ? Нет? Значит никакого СМИ не существует.